
Numerical method for evolving the projected Gross-Pitaevskii equation

P. Blair Blakie
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand

�Received 26 March 2008; published 8 August 2008�

In this paper we describe a method for evolving the projected Gross-Pitaevskii equation �PGPE� for a Bose
gas in a harmonic oscillator potential. The central difficulty in solving this equation is the requirement that the
classical field is restricted to a small set of prescribed modes that constitute the low energy classical region of
the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely
implements this mode restriction and allows an efficient and accurate solution of the PGPE. We show equi-
librium and nonequilibrium results from the application of the PGPE to an anisotropic trapped three-
dimensional Bose gas.
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I. INTRODUCTION

Recently a variety of classical field methods have become
popular in the description of ultracold Bose gases �1–20�.
The appeal of these methods is that the dynamics of the
modes are treated nonperturbatively so that nonequilibrium
situations �e.g., see �13�� or strongly fluctuating equilibrium
systems �e.g., see �18�� can be accurately simulated.

In Refs. �5,16� we have developed a classical field theory,
known as the projected Gross-Pitaevskii equation �PGPE�
formalism, to describe the finite temperature Bose gas. This
approach has found good agreement with experiment in the
critical region of the condensation transition �18�, and has
seen numerous applications to regimes where traditional
mean-field methods are inapplicable �e.g., see �19–21��. A
key component of our theory �and the primary distinction
from other finite temperature classical field theories �4�� that
enables it to be applied to the quantitative description of
experiments is the use of a projector, i.e., the explicit restric-
tion of our description to the low energy modes of the sys-
tem. For typical regimes of interest of order 1000 modes of
the system are sufficiently highly occupied to be treated us-
ing a classical field approach �22�.

Over the past decade there has been extensive develop-
ment of techniques for finding ground state solutions to the
Gross-Pitaevskii equation and algorithms for evolving the
condensate. The basic premise here is that the system is at
zero temperature so that a single mode of the system is oc-
cupied and the underlying basis states used for the simulation
are unimportant as long as they span the condensate. As
such, in general these methods are not immediately appli-
cable to the finite temperature case.

In Ref. �16� we have outlined a theoretical scheme for
simulating a finite temperature trapped Bose gas. In this pa-
per we present our algorithm for that case as well as the
uniform system, and discuss the techniques we use to initial-
ize and analyze PGPE simulations. As the typical usage of
the PGPE formalism is far removed from the well-known
zero temperature Gross-Pitaevskii equation �used to describe
pure condensate dynamics�, we use the results section to
present a detailed example of application and analysis for the
technique. This should be of benefit for others in the com-
munity wishing to adopt these techniques and also provides

thermal quantities for comparison that arise from well-
characterized simulations. An important result we present is
a demonstration of irreversible behavior of the trapped
PGPE, giving evidence for rethermalization of this system.

The outline of this paper is as follows. In the remainder of
this section we briefly introduce the PGPE evolution equa-
tion. In Sec. II we set up a convenient set of units and outline
our generic spectral approach to solving the PGPE equation
in a finite basis. The details of implementing the algorithm
are first presented for a uniform system in Sec. III. In this
case the modes are plane-wave-like and the algorithm can be
efficiently implemented using Fourier transforms. In Sec. IV
the main result of the paper is presented: An implementation
for the experimentally relevant case of a harmonically
trapped system. Here the natural modes to work in are the
harmonic oscillator eigenstates, and we show that a finite
number of such modes can be propagated accurately and
efficiently using appropriate quadrature grids to evaluate the
nonlinear matrix elements. Results for the finite temperature
evolution of a harmonically trapped system are presented in
Sec. V before we conclude.

PGPE theory

The PGPE is a time-dependent nonlinear Schrödinger
equation of the form �5,8,16�

i�
��

�t
= Hsp� + P�NU0���2�� , �1�

where

Hsp = H0 + �V�x,t� , �2�

H0 = −
�2

2m
�2 + Vtrap�x� . �3�

Hsp is the single particle Hamiltonian, which includes the
dominant H0 part and we allow for a �small� perturbation
part �V, �=��x , t� is the classical matter wave field �taken to
be normalized to unity�, N is the total number of atoms de-
scribed by the PGPE, Vtrap�x� is the external trapping poten-
tial, and U0=4�a�2 /m, with a the s-wave scattering length.
The numerical implementation of the PGPE formalism poses
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a rather interesting challenge: Formally, only the low energy
modes of the system are classical �i.e., the classical region
shown schematically in Fig. 1 �22�� and should be the only
modes retained in the numerical description, a restriction ex-
pressed formally by the projector

P�F�x�� � 	
n�C

�n�x� 
 d3x��n
*�x��F�x�� , �4�

where �n�x� are eigenstates of H0 and the summation is re-
stricted to modes in the classical region. The action of P in
Eq. �4� is thus to project the arbitrary function F�x� into the
classical region �C�, which we take to be defined by the
single particle eigenstates up to some specified �single par-
ticle� energy �cut. For a full description of the system dynam-
ics we will require a means of simulating the incoherent
region �i.e., the modes complementary to the classical
region—see Fig. 1� and a means to couple the two regions. A
theoretical formalism for doing this has been presented in
Ref. �10�, but has yet to be fully implemented numerically.
However, the purpose of this paper is to present our approach
for efficiently and accurately simulating Eq. �1� for the ex-
perimentally relevant case of a harmonic oscillator external
potential.

II. FORMAL ALGORITHM

A. Numerical requirements

The modes of the system are of central importance in the
implementation of the PGPE and care must be taken in nu-
merical implementations to ensure the modes are faithfully
represented. Any useful simulation technique must satisfy
the following requirements.

�i� The space spanned by the modes of the simulation
should match that of the classical region of the physical sys-
tem being simulated as closely as possible. That is, the
modes should be the single-particle modes of the system
�i.e., eigenstates of H0� up to the prescribed energy cutoff
�cut.

�ii� The assumption of high occupancy in all modes ne-
cessitates that the numerical scheme must propagate all
modes accurately.

Most commonly used methods for propagating
Schrödinger-type equations do not satisfy these require-

ments; in particular, many methods do not propagate all
modes of the numerical basis faithfully. This leads to negli-
gible errors if the highest modes are unoccupied, as is the
case for the T=0 Gross-Pitaevskii equation. However, it is
clear that methods based on such assumptions will not be
appropriate for simulating fields where the dynamics of all
the modes are important.

B. Computational units

For convenience we present the discussion of our numeri-
cal methods in computational units, indicated by tildes. We
do this by introducing appropriate units of distance x0 and
time t0 in each of the following sections �23�. So, for ex-
ample, our dimensionless distance variable is defined as x̃

=x /x0, dimensionless time is t̃= t / t0, and classical field �̃
=�x0

3/2. The coefficient of the nonlinear term in the Gross-
Pitaevskii equation is given by the product NU0. In dimen-
sionless units we define this as the nonlinearity constant C
�NU0t0 /�x0

3.
Adopting computational units, the projected Gross-

Pitaevskii equation takes the form

i
��̃

�t̃
= P�H̃sp�̃ + C��̃�2�̃� . �5�

C. Implementing the projector

The projector can be implicitly implemented by restrict-
ing the classical field to the modes of interest, i.e.,

�̃�x̃, t̃� = 	
n�C

cn�t̃��̃n�x̃� , �6�

where ��̃n�x̃�� are the eigenstates of H̃0 with respective ei-
genvalue �̃n. The projection is effected by limiting the sum-
mation indices in Eq. �6� to the set of values

C = �n:�̃n � �̃cut� , �7�

i.e., the field �̃ only contains the modes of interest.

Mode evolution

Having restricted the modes for the purposes of the pro-
jector, we can adopt these modes as our spectral basis and
represent their evolution exactly using a Galerkin approach
�i.e., projecting Eq. �5� onto our spectral basis�. This leads to
an evolution equation for the amplitudes

�cn

�t̃
= − i��̃ncn + Fn + CGn� , �8�

where

Fn �
 d3x̃�̃
n
*�x̃��V˜�x̃, t̃��̃�x̃, t̃� , �9�

Gn �
 d3x̃�̃
n
*�x̃���̃�x̃, t̃��2�̃�x̃, t̃� �10�

are the matrix elements of the perturbation potential and non-
linear term, respectively. Once all the matrix elements on the
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FIG. 1. �Color online� Schematic diagram showing the classical
and incoherent regions of the single particle spectrum for a har-
monically trapped Bose gas. The energy �cut is usually chosen so
that the average number of particles in the modes at the cutoff is
ncut�1.

P. BLAIR BLAKIE PHYSICAL REVIEW E 78, 026704 �2008�

026704-2



right-hand side of Eq. �8� are evaluated, the evolution of the
system can be calculated using numerical algorithms for sys-
tems of ordinary differential equations, e.g., the Runge-Kutta
algorithm �e.g., see �24��. Here we do not concern ourselves
with the particular choice of propagation algorithm, but in-
stead focus on evaluating the matrix elements. We do men-
tion in passing that by moving to an interaction picture, de-
fined by the transformation c̄n�t̃�=exp�i�̃nt̃�cn�t̃�, the explicit
dependence on �̃n can be removed from Eq. �8� �also see
�25��.

III. IMPLEMENTATION FOR A UNIFORM SYSTEM

Here we consider the numerical description of a Bose gas
in a cuboid volume with linear dimensions �Lx ,Ly ,Lz� and
subject to periodic boundary conditions. To simplify our dis-
cussion we consider the case where Lx=Ly =Lz so that the
one-dimensional �1D� basis states �see below� are identical in
each direction. For a Bose gas in a uniform system with
periodic boundary conditions, the basis Hamiltonian takes
the form

H̃0 = −
�̃2

�2��2 , �11�

with the boundary conditions,

�̃�x̃ + 1, ỹ, z̃� = �̃�x̃, ỹ + 1, z̃� = �̃�x̃, ỹ, z̃ + 1� = �̃�x̃, ỹ, z̃� ,

�12�

where we have taken x0=Lx as the unit of length and t0
=mLx

2 /�h as the unit of time.

A. Separating into 1D basis states

The basis states �eigenstates of H0� are separable into 1D
eigenstates, i.e.,

�̃n�x̃� ↔ 	̃
�x̃�	̃��ỹ�	̃��z̃� , �13�

�̃n ↔ ̃
 + ̃� + ̃�, �14�

cn ↔ c
��, �15�

where

	̃
�x̃� = eik̃
·x̃ �16�

are the 1D eigenstates of the kinetic energy operator with the

wave vectors k̃
 chosen as harmonics of the perodicity inter-

val, i.e., k̃
=2�
, with 
 an integer, and have respective
eigenvalues ̃
=
2. For clarity we use Greek subscripts to
label the 1D eigenstates, and note that the classically simu-
lated region limits the values these can take to the set

C = �
,�,�:̃
 + ̃� + ̃� � �̃cut� , �17�

i.e., a sphere of radius ��̃cut in 
�� space. For later conve-
nience we define 
max as the maximum value of 
 that oc-
curs in C, i.e., the highest order basis state in each direction.
For the plane-wave case we have 
max��̃cut. This means

that within the classical region there exists M =2
max+1 dis-
tinct 1D eigenstates �i.e., 	̃
� in each direction �since 


� �−
max,
max��, and MT� �
6 M3 3D basis states ��̃n� in the

classical region. In what follows, we will adopt the notation

	̄ to indicate summations restricted to the classical region,
i.e., all triplets of Greek indices in C.

B. Evaluating the matrix elements

The nonlinear matrix element Eq. �10� takes the form

G
�� �
 d3x̃	̃


*�x̃�	̃

�
*�ỹ�	̃

�
*�z̃���̃�x̃, t̃��2�̃�x̃, t̃� . �18�

Substituting the basis expansion for the field, given by Eqs.
�6� and �13� into Eq. �18� gives a series of matrix elements
that can be independently integrated over the coordinate di-
rections. Each of these 1D integrals is of the form

I
��� �
 dx̃	̃


*�x̃�	̃

�
*�x̃�	̃��x̃�	̃��x̃� , �19�

which the indices in general can take any of the M values in
the range −
max, −�
max−1� , . . . ,
max. These integrals are in
some sense trivial for the plane-wave case, i.e., I
���

=�
+�,�+�, however, knowledge of these matrix elements is
not sufficient to implement an efficient algorithm, as we dis-
cuss below.

Expanding the field �̃ in Eq. �18� in terms of the basis
states, the nonlinear matrix elements can be written as

G
�� = 	
���

−

	
���

−

	
���

−

c
���
* c���c���I
���I����I����. �20�

Explicitly carrying out the summations in Eq. �20� for all the
matrix elements of G
�� requires O�M12� operations and
would be prohibitively slow for any practical calculation. We
now show how a quadrature approach can be used to evalu-
ate these integrals much more efficiently, requiring only
O�M4� operations. The essence of this approach is to trans-
form the field to a spatial representation where the nonlinear
term is local. By choosing the spatial grid as an appropriate
quadrature grid, the matrix elements will still be evaluated
exactly. The basic idea of this approach �efficient evaluation
of nonlinear matrix elements on a spatial grid� is widely used
�e.g., see �25–30��, although it is usually implemented in a
manner that is not exact. This is typically an acceptable ap-
proximation if the highest energy modes of the system are
unoccupied, a luxury not available in the PGPE.

In each spatial dimension, the quadrature grid of interest
�for the uniform case� consists of NQ-points given by

x̃j = j�x̃, 1 � j � NQ, �21�

with spacing �x̃=1 /NQ, which spans the spatial region �0,
1�. The quadrature expression for an integral of an arbitrary
function f is

NUMERICAL METHOD FOR EVOLVING THE PROJECTED … PHYSICAL REVIEW E 78, 026704 �2008�

026704-3





a

b

dx̃w�x̃�f�x̃� � 	
j=1

NQ

wjf�x̃j� , �22�

where w�x̃� is the weight function, and wj are the quadrature
weights. Formally, such a quadrature can be implemented for
our plane-wave case if we take a=0, b=1, w�x̃�=1, and wj
=�x̃.

The requirement that our quadrature will exactly calculate
the nonlinear matrix elements is equivalent to the require-
ment that the 1D matrix elements �19� are all evaluated ex-
actly, i.e.,

I
��� = 	
j=1

NQ

�x̃	̃


*�x̃j�	̃�

*�x̃j�	̃��x̃j�	̃��x̃j� �23�

=�
+�,�+�, �24�

which holds for the quadrature described above if we take
NQ�2M. For what follows we take NQ=2M. This quadra-
ture can be applied to the 3D case, so that the nonlinear
matrix elements are computed as

G
�� = 	
ijk

��x̃�3	̃


*�x̃i�	̃�

*�ỹ j�	̃�
*�z̃k���̃�x̃ijk, t̃��2�̃�x̃ijk, t̃� ,

�25�

where x̃ijk= �x̃i , ỹ j , z̃k�, the y and z grids are taken to be iden-
tical to the x grid, and the summation over �i , j ,k� hereafter
will be each taken to be over the range of values 1 to NQ
=2M.

Unless the perturbation potential can be expressed as a
superposition of the plane-wave states �16� of maximum

wave vector k̃max=4�
max in each direction, the quadrature
given above will not be exact for evaluating Eq. �9�. How-
ever, since the perturbation will normally be small, this ap-
proximate treatment should be satisfactory, i.e., we will take

F
�� � 	
ijk

��x̃�3	̃


*�x̃i�	̃�

*�ỹ j�	̃�
*�z̃k��V˜�x̃ijk, t̃��̃�x̃ijk, t̃� .

�26�

C. Overview of numerical procedure

Here we briefly overview how the quadrature described
above can be efficiently implemented numerically. Starting
from the basis set representation of the field �i.e., �c
���� at
an instant of time t̃, the steps for calculating the matrix ele-
ments are as follows.

�1� The field is transformed to a spatial representation
according to

�̃�x̃ijk, t̃� = 	

��

−

Ui
Uj�Uk�c
���t̃� , �27�

where the transformation matrices are defined as the 1D ba-
sis states evaluated on the quadrature grid, i.e.,

Ui
 = 	̃
�x̃i� . �28�

�2� The integrands of the matrix elements �9� and �10� are
then constructed, i.e.,

f�x̃ijk� � �V˜�x̃ijk, t̃��̃�x̃ijk, t̃� , �29�

g�x̃ijk� � ��̃�x̃ijk, t̃��2�̃�x̃ijk, t̃� . �30�

�3� Inverse transforming these integrand functions yields
the desired matrix elements:

F
�� = ��x̃�3	
ijk

U
i

* U

j�
* U

k�
* f�x̃ijk� , �31�

G
�� = ��x̃�3	
ijk

U
i

* U

j�
* U

k�
* g�x̃ijk� . �32�

The slowest step in this procedure is carrying out the basis
transformation �steps 1 and 3�. The computational cost of
this step is O�M4� when carried out as a series of matrix
multiplications. However, for the plane-wave case this trans-
formation is equivalent to a fast Fourier transformation,
which has a computational cost of O�M3 log�M��. In the last
step the transforms to obtain F and G can be combined into
a single transform, i.e., in practice we transform f�x̃ijk�
+Cg�x̃ijk�, which yields Fn+CGn �see Eq. �8��.

IV. IMPLEMENTATION FOR HARMONICALLY
TRAPPED SYSTEM

We now consider the main subject of this paper: The
implementation of the PGPE for the harmonically trapped
system, i.e., where

Vtrap�x� =
1

2
m��x

2x2 + �y
2y2 + �z

2z2� . �33�

In computational units the basis Hamiltonian, H̃0, takes the
form

H̃0 = −
1

2
�̃2 +

1

2
��x

2x̃2 + �y
2ỹ2 + z̃2� , �34�

where �x=�x /�z, �y =�y /�z, and we have used the harmonic
oscillator frequency associated with the z direction to define
units of length x0=�� /m�z and time t0=�z

−1. To simplify our
discussion of the numerical method, we will take the har-
monic trapping potential to be isotropic, i.e., �x=�y =1. This
allows us to avoid using cumbersome notation to account for
different spectral bases in each direction.

The same decomposition used for the plane-wave case
�13� can be applied in the harmonically trapped system if we
take �	̃
�x̃�� to be eigenstates of the 1D harmonic oscillator
Hamiltonian, i.e.,

�−
1

2

d2

dx̃2 +
1

2
x̃2�	̃
�x̃� = ̃
	̃
�x̃� , �35�

with eigenvalue ̃
= �
+ 1
2 �, where we have taken 
 to be a

non-negative integer. Such spectral representations have
been considered previously for the zero-temperature �non-
projected� Gross-Pitaevskii equation in Refs. �25,30�.

We define 
max as the maximum value of 
 that occurs in
C, i.e., for the harmonic case 
max �̃cut−

1
2 . This means that
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within the classical region there exists M =
max+1 distinct
1D eigenstates �i.e., 	̃
� in each direction �since 
 takes the
values 0 ,1 , . . . ,
max�, and MT� 1

6 M3 3D basis states ��̃n� in
the classical region.

A. Oscillator state properties

We briefly review the properties of the harmonic oscilla-
tor states, which we utilize as our spectral basis.

The eigenstates of the 1D single particle Hamiltonian �35�
are

	̃
�x̃� = h
H
�x̃�e−x̃2/2, �36�

where h
= �2

!���−1/2 is the normalization constant, and
H
�x̃� is a Hermite polynomial of degree 
, defined by the
recurrence relation

H
+1�x̃� = 2x̃H
�x̃� − 2
H
−1�x̃�, 
 = 1,2, . . . �37�

with H0�x̃�=1, and H1�x̃�=2x̃. The harmonic oscillator states
are eigenstates of the Fourier transform operator with eigen-
value �−i�
, i.e.,

	̃
�p̃� = �− i�−
 1
�2�


 dx̃e−ip̃x̃	̃
�x̃� . �38�

Thus knowledge of the basis amplitudes c
�� allows us to
efficiently and precisely construct the momentum represen-
tation of the classical field, i.e.,

�̃�p̃� = 	

��

−

�− i��
+�+��c
��	̃
�p̃x�	̃��p̃y�	̃��p̃z� . �39�

Step operators

It is useful to consider the so-called step operators of
quantum mechanics, defined as

âx
+ =

1
�2

�−
�

�x̃
+ x̃� , �40�

âx
− =

1
�2

� �

�x̃
+ x̃� , �41�

which are mutually adjoint and have the commutation rela-
tion

�âx
−, âx

+� = 1. �42�

In a similar manner we can define step operators for the ỹ
and z̃ directions, although for the sake of brevity we avoid
doing this here.

Applying the step operators to the 1D eigenstates yields

âx
+	̃
�x̃� = �
 + 1	̃
+1�x̃� , �43�

âx
−	̃
�x̃� = �
	̃
−1�x̃� , �44�

so that the matrix representation of these operators in the
spectral basis is

�âx
+�
� �
 dx	̃



*�x̃�âx

+	̃��x̃� �45�

=�� + 1�
,�+1, �46�

�âx
−�
� = ���
,�−1. �47�

Most importantly this allows us to represent the operators x̃
and �x� �

�x̃ in the spectral basis �exactly� as

�x̂�
� =
1
�2

�âx
+ + âx

−�
� �48�

=�� + 1

2
�
,�+1 +��

2
�
,�−1, �49�

��x
̂�
� =

1
�2

�âx
− − âx

+�
� �50�

=��

2
�
,�−1 −�� + 1

2
�
,�+1. �51�

So, for example, consider the position expectation of the

field, i.e., �x̃�t̃��=�d3x̃x̃��̃�x̃ , t̃��2. Note that this expectation is
a quantum mechanical average at time t̃, rather than a ther-
mal �ensemble/time� average. This quantity can be calculated
in the spectral basis as

�x̃�t̃�� = 	

���

�

c
���
* �t̃��x̂��
c
���t̃� , �52�

where 	˜ 
��� indicates a restricted summation over the vari-
ables �
 ,� ,� ,�� such that both �
 ,� ,�� and �� ,� ,�� lie in
C. While this appears to be of computational cost O�M4�, in
fact the sparseness of the underlying step operators means
that this operation is O�M3�.

Some care needs to be taken when applying the step op-
erators. Formally, these operators have infinite size matrix
representations, whereas our classical field application is in-
trinsically finite by virtue of the energy cutoff. An implica-
tion of this is that, e.g., the action of the âx

+ operator will take
the highest x modes in the classical region onto modes above
the cutoff, which would then be lost from our description.
This is a problem when we wish to consider the product of
operators and can be avoided by using the commutation re-
lation �42� to write operators of interest in a normally or-
dered form, whereby lowering operators �âx

−� occur before
raising operators �âx

+�. For example,

x2̂ =
1

2
�âx

+ + âx
−�2 �53�

=
1

2
��âx

+�2 + �âx
−�2 + 2âx

+âx
− + 1� , �54�

where we have replaced âx
−âx

+ by âx
+âx

−+1 on the second line
according to our normal ordering prescription.
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We do not develop these ideas any further here, but em-
phasize the utility of these results in the analysis of classical
field calculations. Many common operators, and hence ma-
trix elements or expectations of interest, can be expressed in
terms of products of position and momentum �derivative�
operators �e.g., angular momentum L̂z=−i�x̂�ŷ − ŷ�x̂��. These
can be reformulated in terms of the normally ordered step
operators that can be applied to the spectral basis as O�M3�
operations, and are exact. This avoids the O�M4� cost of
transforming to quadrature grids and the associated difficul-
ties of coming up with accurate expressions on such grids for
the operators of interest.

B. Evaluating the matrix elements

The nonlinear matrix element �10� takes the form given in
Eq. �18�. An important observation made in Ref. �30� is that
these matrix elements can be computed exactly with an ap-
propriately chosen Gauss-Hermite quadrature. To show this
we note that because the harmonic oscillator states are of the
form 	̃
�x̃�=h
H
�x̃�exp�−x̃2 /2�, where H
�x̃� is a Hermite
polynomial of degree 
, the field �at any instant of time� can
be written as

�̃�x̃, t̃� = Q�x̃, ỹ, z̃�e−�x̃2+ỹ2+z̃2�/2, �55�

where

Q�x̃, ỹ, z̃� � 	

��

−

c
���t̃�h
H
�x̃�h�H��ỹ�h�H��z̃� �56�

is a polynomial that, as a result of the cutoff, is of maximum
degree M −1 in the independent variables.

Similarly, it follows that because the interaction term �10�
is fourth order in the field, it can be written in the form

G
�� =
 d3x̃e−2�x̃2+ỹ2+z̃2�P
���x̃, ỹ, z̃� , �57�

where

P
���x̃, ỹ, z̃� � h
H
�x̃�h�H��ỹ�h�H��z̃�

� �Q�x̃, ỹ, z̃��2Q�x̃, ỹ, z̃� �58�

is a polynomial of maximum degree 4�M −1� in the indepen-
dent variables. Identifying the exponential term as the usual
weight function for Gauss-Hermite quadrature, the integral
can be exactly evaluated using a three-dimensional spatial
grid of 8�M −1�3 points �i.e., 2�M −1� points in each direc-
tion �31��, i.e.,

G
�� = 	
ijk

wiwjwkP
���x̃i, x̃j, x̃k� , �59�

where x̃i and wi are the 2�M −1� roots and weights of the 1D
Gauss-Hermite quadrature with weight function w�x̃�
=exp�−2x̃2� �32�.

The perturbation potential can be calculated exactly on
this grid if it is of the form

�V˜�x̃, t̃� = e−�x̃2+ỹ2+z̃2�R�x̃, ỹ, z̃� , �60�

where R�x̃ , ỹ , z̃� is a polynomial of maximum degree 2�M
−1� in the independent variables. However, if we assume the
perturbation is small, then it will be permissible to evaluate it
approximately on the same quadrature grid used for the non-
linear term.

C. Overview of numerical procedure

Here we briefly overview how the quadrature described
above can be efficiently implemented numerically. This dif-
fers slightly from the plane-wave case by virtue of the less
trivial nature of the quadrature weights and weight functions.
Starting from the basis set representation of the field �i.e.,
�c
���� at an instant of time t̃, the steps for calculating the
matrix elements are as follows.

�1� We transform the field to a spatial representation ac-
cording to

�̃�x̃ijk, t̃� = 	

��

−

Ui
Uj�Uk�c
���t̃� , �61�

where the transformation matrices are defined as the 1D ba-
sis states evaluated on the quadrature grid, i.e.,

Ui
 = 	̃
�x̃i� . �62�

�2� The integrands of the matrix elements �9� and �10� are
then constructed as quadratures by appropriately dividing by
the weight function and premultiplying by the weights �33�,
i.e.,

f�x̃ijk� � wiwjwke
2�x̃ijk�2�V˜�x̃ijk, t̃��̃�x̃ijk, t̃� , �63�

g�x̃ijk� � wiwjwke
2�x̃ijk�2��̃�x̃ijk, t̃��2�̃�x̃ijk, t̃� . �64�

�3� Inverse transforming these integrand functions yields
the desired matrix elements:

F
�� = 	
ijk

U
i

* U

j�
* U

k�
* f�x̃ijk� , �65�

G
�� = 	
ijk

U
i

* U

j�
* U

k�
* g�x̃ijk� . �66�

The slowest step in this procedure is carrying out the basis
transformation. The computational cost of this step is O�M4�
when carried out as a series of matrix multiplications.

D. Other transforms

For completeness, we describe how the basis transforma-
tions can be generalized for use in preparing states in the
spectral basis and transforming to position and momentum
grids. While being unrelated to propagation, these proce-
dures are part of an essential set of tools for the general
application of the method and analysis of results.

1. Projecting a position space state onto the spectral basis

Frequently we are presented with a field specified in the

position basis, i.e., �̃A�x̃�, and need to obtain its spectral
representation, i.e.,
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c
��
A =
 d3x̃	̃



*�x̃�	̃

�
*�ỹ�	̃

�
*�z̃��̃A�x̃� . �67�

If the modes of the classical region span the function �̃A�x̃�
then this procedure provides an exact representation, how-
ever, in general the resulting coefficients c
��

A represent the

function projected into the classical region, i.e., P��̃A�.
In practice we implement this transform onto the spectral

basis in a similar manner to that used in Eq. �65�, i.e., as

c
��
A = 	

ijk

U
i

* U

j�
* U

k�
* wiwjwke

�x̃ijk�2�̃A�x̃ijk� , �68�

where the transformation matrices are defined as the 1D ba-
sis states evaluated on the quadrature grid, i.e., Ui
= 	̃
�x̃i�
as in Eq. �62�; but now the quadrature is different to that

used to evaluate the nonlinear matrix elements. Replacing �̃A

by P��̃A� in Eq. �67� we note that integrand is of the form of
a exponential exp�−�x̃�2� times a polynomial function of
maximum degree 2�M −1� in each of the coordinates. These
integrals are exactly computed in each direction using
Gauss-Hermite quadrature defined for the weight function
w�x̃�=exp�−x̃2� with M roots x̃i and weights wi.

2. Transforming the classical field to arbitrary position
and momentum grids

An important aspect of any classical field method is the
ability to transform the results to desired grids for analysis
and/or visualization. This is particularly convenient for the
spectral representation we have adopted here. The basic pro-
cedure is as indicated in Eq. �61� except that the grid points
are now arbitrary and need not be related to any quadrature
grid. Taking one direction to have a single point, e.g., �x̃j�
= x̃1, allows us to take slices of the classical field.

As shown in Eq. �39� in the spectral basis there is a
simple relationship between the position and momentum rep-
resentations. Thus, to obtain the momentum space field we
use Ui


p = �−i�
	̃
�p̃i� as the transformation matrices, i.e.,

�̃�p̃ijk, t̃� = 	

��

−

Ui

p Uj�

p Uk�
p c
���t̃� . �69�

3. Column densities

Computing column densities is important for modeling
ultracold Bose gases, since this is what is measured in ex-
periments using absorption imaging �the primary method of
analyzing these systems�. For example, when the in situ sys-
tem is imaged using light propagating along the z direction,
the observable corresponds to the column density defined as

ñc�x̃, ỹ� � 
 dz̃��̃�x̃��2. �70�

On the other hand, often the trapping potential is turned off
and the system is allowed to expand freely before it is im-
aged. If the expansion time is sufficiently long the measured
signal is related to a momentum space column density, e.g.,
for imaging along z̃

ñc�p̃x, p̃y� � 
 dp̃z��̃�p̃��2. �71�

If the imaging direction �i.e., direction along which we inte-
grate� corresponds to a coordinate direction the column den-
sity can be conveniently and exactly evaluated. We will con-
sider the case in Eq. �70� for definiteness, though the same
procedure immediately applies to the momentum case, and
for column densities taken along other axes.

We transform the field to a position grid �̃�x̃ijk�, where the
x̃ and ỹ grids can be chosen arbitrarily, but the z̃ grid needs to
be a M point quadrature grid of the type discussed below Eq.
�68�. This choice for the z̃ grid ensures that

ñc�x̃i, ỹ j� = 	
k

wke
z̃k
2
��̃�x̃ijk��2, �72�

exactly computes the z̃ integral in Eq. �70� where the weights
are those described below Eq. �68�.

E. Three-body term

Another important term that often needs to be evaluated
�e.g., see Ref. �34�� is the so-called three-body term, which

can be implemented by adding the term − 1
2 iK̃3��̃�4�̃ to the

right-hand side of Eq. �5�, where K̃3 characterizes the loss of
atoms due to three-body recombination. Generally this pro-
cess is small in comparison to the two-body interaction term
�of strength C�, and causes the field to lose normalization.

Including this term in the evolution equation �8� we ob-
tain

�cn

�t̃
= − i��̃ncn + Fn + CGn� −

1

2
K̃3Jn, �73�

where we have introduced the matrix element

Jn =
 d3x̃�̃
n
*�x̃���̃�x̃, t̃��4�̃�x̃, t̃� . �74�

Decomposing this into 1D eigenstate basis �i.e., n→ �
����
we have that

J
�� =
 d3x̃e−3�x̃2+ỹ2+z̃2�S
���x̃, ỹ, z̃� , �75�

where S
�� is a polynomial of maximum degree 6�M −1� in
the independent variables.

Using the same arguments as applied to the normal inter-
action term �see Sec. III B�, we can show that this term could
be evaluated exactly on a three-dimensional spatial grid con-
sisting of 27�M −1�3 points �i.e., 3�M −1� points along each
direction� using a quadrature appropriate to the weight func-
tion w�x̃�=exp�−3x̃2� in each direction.

However, like the perturbative potential, usually this term
has a rather small effect on the dynamics and the additional
expense of implementing a special transform to exactly
evaluate the J-matrix elements is unnecessary. In such cases,
it should be an acceptable approximation to calculate these
matrix elements on the same grids used for the two-body
interaction.
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F. Convergence and future numerical work

Here we present some evolution convergence results for
our algorithm and discuss avenues for future development of
PGPE numerics. Unlike the zero temperature Gross-
Pitaevskii equation, where convergence can be ensured by
increasing the basis size, here such a procedure will increase
the classical region size �number of degrees of freedom� and
hence effect the thermal properties of the system �35�. Thus,
for the PGPE formalism the essential requirement is that all
modes within the classical region are propagated precisely.

We have used an adaptive step Runge-Kutta-Fehlberg al-
gorithm to evolve the classical field equation �8� with a
specified relative error tolerance. Since computing the matrix
elements for our harmonically trapped algorithm is of com-
putational cost O�M4�, the development of higher order or
more efficient propagation algorithms would be desirable
�e.g., see Refs. �36–39� for various algorithms developed for
evolving the zero temperature Gross-Pitaevskii equation�.
For example, the simulation presented in column �d� of Figs.
2–4 has a basis of MT=1857 modes propagated over a time
interval of t̃�200�. At a relative tolerance of 10−6 this simu-
lation took approximately 2 h and 23 min on a 2.66 GHz
Xeon �Woodcrest� processor, consisting of 61 147 steps in-
cluding 3013 failed steps. In Table I we examine the evolu-
tion algorithm convergence properties using the two mea-
sures

�X = 	
j=1

MT

�cj�t̃� − cj
A�t̃��2, �76�

�N = 1 − 	
j=1

MT

�cj�t̃��2, �77�

i.e., a difference measure of the final states and the loss in
normalization, where cj

A�t̃� are the mode amplitudes at time t̃
of a more accurate simulation.

While we have strived to ensure highly accurate time
propagation, statistical mechanical arguments suggest that
this may be unnecessary and some additional noise from
imprecise evolution may assist the system to explore the en-
semble of available states more rapidly, as long as this noise
does not effect the constants of motion describing the sys-
tem. For our evolution algorithm the normalization of the
field is not conserved and anecdotal evidence suggests that
monitoring changes in normalization can be used as a sum-
mative assessment of the evolution accuracy, e.g., for the
simulation described above the final state normalization was
0.999 89.

Here we have considered a spectral cutoff in the ideal
single particle basis, i.e., harmonic oscillator states. �We re-
fer readers to Ref. �40� for a discussion of how numerics can
be implemented for a rotating trapped system�. For suffi-
ciently high energy cutoff, this basis approximately diagonal-
izes the many-body problem. However, for situations requir-
ing lower energy cutoffs �e.g., when T�Tc�, the Hartree-
Fock interacting modes would form a better basis for
defining the classical region. Since these modes do not have
an associated quadrature, the scheme presented here cannot
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FIG. 2. �Color online� Position and momentum density slices in
the xy plane. Row �a1�–�d1�: instantaneous position density slices
for z̃=0. Row �a2�–�d2�: time-averaged position density slices for
z̃=0. Row �a3�–�d3�: instantaneous momentum density slices for
p̃z=0. Row �a4�–�d4�: time-averaged momentum density slices for

p̃z=0. Parameters: Column �a1�–�a4�: Ẽ=11.64, fcond=0.87, column

�b1�–�b4�: Ẽ=15.07, fcond=0.61, column �c1�–�c4�: Ẽ=20.70,

fcond=0.24, and column �d1�–�d4�: Ẽ=25.83, fcond=0.01. Other pa-
rameters: C=750, �x=4, �y =1, and �̃cut=35.
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FIG. 3. �Color online� Position and momentum density slices in
the yz plane. Row �a1�–�d1�: instantaneous position density slices
for x̃=0. Row �a2�–�d2�: time-averaged position density slices for
x̃=0. Row �a3�–�d3�: instantaneous momentum density slices for
p̃x=0. Row �a4�–�d4�: time-averaged momentum density slices for

p̃x=0. Parameters: Column �a1�–�a4�: Ẽ=11.64, fcond=0.87, column

�b1�–�b4�: Ẽ=15.07, fcond=0.61, column �c1�–�c4�: Ẽ=20.70,

fcond=0.24, and column �d1�–�d4�: Ẽ=25.83, fcond=0.01. Other pa-
rameters: C=750, �x=4, �y =1, and �̃cut=35.
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be immediately extended to this regime. Another pathway,
which may allow more flexibility in the nature of the cutoff,
would be to use a more efficient representation �e.g., plane-
wave/Fourier transform� and approximately implement the
projection.

V. RESULTS

In this section we consider the application of the PGPE
formalism to a harmonically trapped system with a fixed

energy cutoff, and take �Ṽ=0. To elucidate features of our
method we consider an anisotropic harmonic trap with �x
=4 and �y =1, i.e., the system has a fat pancake geometry
with the x direction being tightly confined. Taking �̃cut=35
there are MT=1857 single particle modes in the classical
region with the maximum order of eigenstate occurring in
each coordinate direction being �
max�x=8, �
max�y =32, and
�
max�z=32.

The PGPE is ergodic and the generic method to study
finite temperature regimes is to begin with a randomized

initial state with some definite energy, Ẽ, as quantified by the
energy functional

Ẽ��̃� =
 d3x̃�̃*�H̃sp +
C

2
��̃�2��̃ . �78�

This energy is a constant of motion for the PGPE �5� and
forms a convenient macroscopic constraint for specifying the

thermal state of the system. The procedure for making such
energy states is rather arbitrary. We choose to make use of
the Thomas-Fermi approximation to the ground state of the
energy functional, given by

�̃TF�x̃� =��TF − Ṽtrap�x̃�
C

���TF − Ṽtrap�x̃�� , �79�

where ��x� is the unit step function and �TF

= 1
2 �15�x�yC /4��2/5 is the Thomas-Fermi chemical potential

�41�. We mix the Thomas-Fermi state �projected onto the
spectral basis according to the procedure given in Sec.
IV D 1� with a high energy randomized state �42� in the ap-
propriate ratio to obtain a normalized state of the desired
energy. Such states, for a range of energies, are propagated
according to the PGPE for a time period of t̃=200� and 500
states of the field are saved at equally spaced times during
the evolution, i.e., at times t̃ j =2�j /5, with 0� j�500.

Due to the stochastic nature of the initial condition for the
simulation the instantaneous behavior of the system is of
reduced importance, instead the quantities of interest are the
macroscopic observables that can be computed from the sys-
tem evolution. We consider a few such observables here, and
refer the reader to Ref. �16� for a more general discussion on
this topic.

One observable we will concern ourselves with is the av-
erage position density calculated as the time-average

���̃�x̃��2� =
1

Ms
	

j

��̃�x̃, t̃ j��2, �80�

where the summation is taken over some subset of Ms saved
states. Here we use the last 350 of the saved states for aver-

TABLE I. Convergence properties of evolution algorithm. The
relative error tolerance, number of steps needed to obtain that error
tolerance, and the final error measures �N and �X are shown �see
text�. Simulation with 10−8 tolerance is used as cj

A in measuring
error of less accurate calculations. Other parameters: t̃=2�, C

=1000, �x=4, �y =1, �̃cut=35, and the initial state has energy Ẽ
=18 �see Sec. V�.

Relative Tolerance Number steps �N �X

1�10−2 131 2.54�10−2 3.13�10−1

5�10−3 135 2.04�10−2 1.94�10−1

1�10−3 186 6.72�10−3 2.01�10−2

5�10−4 213 3.52�10−3 5.39�10−3

1�10−4 294 7.13�10−4 2.25�10−4

5�10−5 335 3.57�10−4 5.54�10−5

1�10−5 455 7.02�10−5 2.15�10−6

5�10−6 527 3.50�10−5 5.29�10−7

1�10−6 725 6.93�10−6 2.05�10−8

5�10−7 829 3.46�10−6 4.98�10−9

1�10−7 1139 6.92�10−7 1.67�10−10

5�10−8 1311 3.45�10−7 3.28�10−11

1�10−8 1797 6.92�10−8 N/A
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FIG. 4. �Color online� Position and momentum column densities
integrated along the z̃ axis. Row �a1�–�d1�: instantaneous position
column densities. Row �a2�–�d2�: time-averaged position column
densities. Row �a3�–�d3�: instantaneous momentum column densi-
ties. Row �a4�–�d4�: time-averaged momentum column densities.

Parameters: Column �a1�–�a4�: Ẽ=11.64, fcond=0.87, column �b1�–
�b4�: Ẽ=15.07, fcond=0.61, column �c1�–�c4�: Ẽ=20.70, fcond

=0.24, and column �d1�–�d4�: Ẽ=25.83, fcond=0.01. Other param-
eters: C=750, �x=4, �y =1, and �̃cut=35.
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aging. We use the first part of the evolution �i.e., up to t̃
=60�� to allow the arbitrarily chosen initial state to relax to
equilibrium, a point we consider further in Sec. V B. Simi-
larly, we can construct the momentum density by time-
averaging the Fourier transformed classical field �39�.

Another quantity of interest is the condensate fraction.
The definition we use was provided by Penrose and Onsager
�43�, and identifies the condensate fraction fcond as the largest
eigenvalue of the one-body density matrix, defined in terms

of the field as G1B�x̃ , x̃��= ��̃*�x̃��̃�x̃���. In our formalism
this quantity is equivalently and much more efficiently com-
puted in the mode basis as

Gmn
1B = �c

m
*cn� , �81�

where � � is evaluated using time-averaging �e.g., see Eq.
�80��. It is also possible to calculate thermal parameters from
the dynamical evolution of the field, such as temperature and
chemical potential, and we refer the reader to Ref. �17� for
more details.

A. Instantaneous and time averaged density profiles

Our results for the instantaneous and averaged density
profiles are shown in Figs. 2 and 3. In Fig. 2 the system is
viewed in the xy plane using a z̃=0 slice through the field.
The position space density clearly reveals the anisotropy of
the confining potential. As the energy of the system increases
it fluctuates more strongly �as revealed in the instantaneous
density slices�, however, the averaged density profiles
change quite gradually. In contrast, the momentum space
density �shown as p̃z=0 slices� changes much more signifi-
cantly with system energy. At low energies �e.g., Figs. 2�a3�
and 2�a4�� the condensate is prominent in the system and is
easily identified as the dense anisotropic momentum peak
centered at zero momentum. This momentum anisotropy is
the opposite of that observed in position space due to the
Heisenberg relationship between position and momentum
size of the condensate wave packet along each direction. We
also see a background radially symmetric distribution in the
averaged momentum density �e.g., Fig. 2�a4�� that increases
in prominence �at the expense of the condensate� as the en-
ergy of the system increases �e.g., see figures along the row
Fig. 2�a4�–2�d4��. This background constitutes what is usu-
ally referred to as the thermal cloud of the system—or at
least the component of this that exists within the classical
region �44�. Comparing the averaged and respective instan-
taneous momentum density profiles �i.e., see Fig. 2 along the
rows �instantaneous� �a3�–�d3� and �averaged� �a4�–�d4��, we
see that the modes contributing to this radially symmetric
density fluctuate quite strongly, and adequate time-averaging
to obtain their averaged profiles is essential.

In Fig. 3 the system is viewed in the yz plane using a x̃
=0 slice through the field �p̃x=0 slice for the momentum
space results�. The averaged position and momentum space
density are isotropic like the trapping potential in this plane.
These results also allow us to appreciate the role of the clas-
sical region cutoff on typical fluctuations in the system.
Compare the instantaneous momentum densities in Figs.
2�d3� and 3�d3�. In Fig. 3�d3� the length scale for fluctua-

tions is the same in the p̃y and p̃z directions, reflecting the
symmetry of the potential. In Fig. 2�d3� the length scale for
fluctuations is much longer in the p̃x direction than in the p̃y
direction. We do not see the same features in the position
space fluctuations, e.g., in Figs. 2�d1� and 3�d1� where the
length scales in all directions appear to be similar. These
observations can be explained by a simple argument based
on a semiclassical analysis of the single particle Hamiltonian
�34�: The maximum position extent of the system in the j

direction is X̃j ��2�̃cut /� j, and using that the number of
modes in this direction is Mj � �̃cut /� j, we obtain that the
typical fluctuation length scale is �x̃j ��2 / �̃cut �45�, i.e., in-
dependent of trap frequency �i.e., � j� in position space. In
momentum space we instead have that the momentum extent

of the field, P̃j ��2�̃cut, is independent of the trap frequency,
while the length scale for fluctuations �p̃j �� j

�2 / �̃cut is pro-
portional to the trap frequency. This qualitatively agrees with
the observation in Fig. 2�d3� that the momentum fluctuation
length scale is about four times longer in the p̃x direction
than in the p̃y direction.

For comparison with the density slices we have just dis-
cussed in Fig. 4 we show the instantaneous and time-
averaged column densities in position and momentum space.
Taking the column density in some sense averages the fluc-
tuations in the instantaneous system state compared to the
density slice. The instantaneous column densities closely ap-
proximate the images taken in experiment, and thus the fluc-
tuations seen should be measurable; however, we note that
our results here exclude the contribution from the incoherent
region which in general will be important to include.

B. Relaxation to equilibrium

Finally we consider some dynamical aspects of how a
distorted system, described by the PGPE, returns to an equi-
librium state. To do this we construct two initial states with
the same total energy but rather different density distribu-
tions. Density slices of these two states are shown in Figs.
5�a� and 5�c�. Our preparation procedure for those two states
is as described before, except that here we choose to use a
Thomas-Fermi state that is distorted so as to be extended
along the x̃ and ỹ directions, respectively. As conjectured
earlier, since both states have the same energy they should
relax to the same �dynamical� equilibrium. In Figs. 5�b� and
5�d� we show the density slices of these states after propa-
gating the system for 30 �z̃ direction� trap periods. The den-
sity slices of these final states qualitatively look much more
similar to each other than the initial states did, consistent
with both systems reaching the same equilibrium. However,
we can provide other evidence for the system returning to
equilibrium. In Figs. 5�e� and 5�f� we examine the position
variance of the classical field along the ỹ direction defined as

var„ỹ�t̃�… � �ỹ�t̃�2� − �ỹ�t̃��2, �82�

i.e., the quantum mechanical average of the field at time t̃.
This provides a measure of the system width in that direc-
tion. We note that this quantity is efficiently evaluated with
the step operator formalism discussed in Sec. IV A 1. Figure
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5�e� reveals that var(ỹ�t̃�) initially shows strong evolution
that is characteristic of the initial state being far from equi-
librium. This initial evolution is strikingly different for the
two cases reflecting that initial states considered here are,
respectively, compressed �Fig. 5�a�� and extended �Fig. 5�c��
in the ỹ direction. After a few trap periods the dynamics of
var�ỹ� is seen to reduce considerably.

In Fig. 5�f� we examine dynamics of var�ỹ� after the sys-
tem has relaxed for 10 trap periods. The fluctuations in
var�ỹ� are much reduced in amplitude compared to what was
observed in the initial evolution. Indeed, the fluctuations here
are consistent with thermal fluctuations of the equilibrium
state, and it is clear that both initial states considered have
relaxed to an equilibrium state with approximately the same
average value for var�ỹ�. We also note that both systems end
up with approximately the same condensate fraction of
fcond�0.15, obtained from density matrix calculated by
time-averaging states over the last ten trap periods of the
system evolution.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have described an efficient spectral
method for solving the projected Gross-Pitaevskii equation
for a Bose gas in a harmonic oscillator potential. We have
shown that the nonlinear matrix elements can be calculated
exactly using appropriately chosen quadrature grids and have
described how this can be implemented as an efficient algo-
rithm. We have also discussed numerous properties of our
approach that allow various observables to be calculated, ei-
ther in the spectral basis or by making appropriate use of
quadrature grids. Finally, we have applied our method to an
anisotropic 3D Bose gas to indicate typical features of the
solutions.

The rather unique requirement of the PGPE is that it
needs to be propagated on a small prescribed basis, usually
containing of order 1000 modes. For this reason the addi-
tional computational cost of using a spectral method is offset
by the rather small basis set size. However, recently our
method has been used to simulate a trapped system with up
to 4�105 modes �34�, and is reasonably efficient even for
larger problems. However, there is much scope for develop-
ment of the algorithm and we hope that the detailed discus-
sion of numerics and example application in this paper will
stimulate others in the community to develop more flexible
and general PGPE algorithms

The algorithm outlined in this paper is an important step
to realizing a comprehensive theory for simulating the dy-
namics of a trapped finite temperature Bose gas. The next
steps will involve moving beyond the PGPE description to
the stochastic Gross-Pitaevskii equation �SGPE� �10�, which
includes the effects of coupling between the classical and
incoherent regions. This theory differs from the PGPE pri-
marily through two new features: �i� Stochastic noise terms
effect the evolution and cause the transfer of particles and
energy into and out of the classical region. These contribu-
tions have already been added to the numerical approach
outlined here �46�. �ii� Scattering terms corresponding to col-
lisions between incoherent and classical region atoms that
cause the transfer of momentum into the system. These terms
are more challenging to implement and are the subject of
current work.
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